Flunarizine reduces cerebral infarct size after photochemically induced thrombosis in spontaneously hypertensive rats.
نویسندگان
چکیده
The cerebroprotective effect of flunarizine was studied in a minimally invasive model of photochemically induced cerebral infarction in spontaneously hypertensive rats. Intravenous administration of the photosensitizing dye rose bengal and intense focal illumination of the brain produced a deep cortical infarction that resulted from singlet oxygen-induced peroxidative injury to the endothelial membrane, subsequent platelet adhesion, and eventual thrombus formation. The infarct size was calculated from area measurements on consecutive histologic sections prepared from the brain cortex 4 hours after the onset of the insult. Oral treatment with 40 mg/kg flunarizine 3 hours before photoexcitation resulted in a significant reduction of the median infarct size from 11.75 mm3 in the untreated group to 6.40 mm3 in the treated group (n = 13, p less than 0.001). At this dose, flunarizine had no effect on systemic blood pressure. In a separate experiment the area of thrombotic obstruction was quantified 30 minutes after the onset of light exposure. Flunarizine did not significantly reduce early thrombus formation (2.28 mm3 in the untreated and 1.78 mm3 in the treated group) (n = 12, p = 0.2). The infarcted area at 4 hours was considerably larger than the initial thrombotic area. Protection with flunarizine against development of cortical infarction has been unequivocally shown. Although some effect may already be present at the early stage of lesion formation, the major protective action admittedly occurred in the later postinsult period when the lesion was expanding.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Vitamin E Derivative Alpha-Tocotrienol Failed to Show Neuroprotective Effects after Embolic Stroke in Rats
Objective(s) Previous studies have demonstrated that pretreatment with alpha-tocotrienol (a-TCT) can reduce ischemic damage in mice following middle cerebral artery (MCA) occlusion. It is also reported to decrease stroke- dependent brain tissue damage in 12-Lox-deficient mice and spontaneously hypertensive rats. In the present study, the neuroprotective effects of a-TCT and rosiglitazone (RGZ)...
متن کاملFocal Stroke in Rats
Background and Purpose: Antihypertensive treatment with hydralazine for 10 weeks but not 6 weeks reduces infarct size in 13-week-old spontaneously hypertensive rats subjected to focal cerebral ischemia. This study was designed to examine whether the duration of treatment needed to reduce infarct size depends on how long hypertension is present before the initiation of antihypertensive therapy. ...
متن کاملLiposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery.
BACKGROUND AND PURPOSE Liposome-encapsulated hemoglobin (LEH; TRM-645) is a novel oxygen (O(2)) carrier with a lower O(2) affinity (P(50)O(2)=40 mm Hg) than red blood cells. In contrast to cell-free hemoglobin, encapsulation prevents hemoglobin extravasation, whereas its subcellular size (230 nm) may improve O(2) delivery and limit the severity of cerebral infarction. METHODS The extent of ce...
متن کاملTirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats.
BACKGROUND AND PURPOSE We examined the cytoprotective effect of the lipid peroxidation inhibitor tirilazad mesylate (U74006F) in rodent models of neocortical infarction induced by transient and permanent focal cerebral ischemia. METHODS Wistar rats (experiment 1) and spontaneously hypertensive rats (experiment 2) were subjected to 2 hours of transient middle cerebral artery occlusion followed...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1987